张泸文, 夏苏捷, 顾正健, 陈燕, 潘颖. 高效液相色谱串联质谱法测定水产品中麻醉剂及代谢物的不确定度评定[J]. 上海预防医学, 2022, 34(6): 533-540. DOI: 10.19428/j.cnki.sjpm.2022.22042
引用本文: 张泸文, 夏苏捷, 顾正健, 陈燕, 潘颖. 高效液相色谱串联质谱法测定水产品中麻醉剂及代谢物的不确定度评定[J]. 上海预防医学, 2022, 34(6): 533-540. DOI: 10.19428/j.cnki.sjpm.2022.22042
ZHANG Luwen, XIA Sujie, GU Zhengjian, CHEN Yan, PAN Ying. Uncertainty evaluation for determination of anesthetics residues and their metabolites in aquatic products by high-performance liquid chromatography-tandem mass spectrometry[J]. Shanghai Journal of Preventive Medicine, 2022, 34(6): 533-540. DOI: 10.19428/j.cnki.sjpm.2022.22042
Citation: ZHANG Luwen, XIA Sujie, GU Zhengjian, CHEN Yan, PAN Ying. Uncertainty evaluation for determination of anesthetics residues and their metabolites in aquatic products by high-performance liquid chromatography-tandem mass spectrometry[J]. Shanghai Journal of Preventive Medicine, 2022, 34(6): 533-540. DOI: 10.19428/j.cnki.sjpm.2022.22042

高效液相色谱串联质谱法测定水产品中麻醉剂及代谢物的不确定度评定

Uncertainty evaluation for determination of anesthetics residues and their metabolites in aquatic products by high-performance liquid chromatography-tandem mass spectrometry

  • 摘要:
    目的 对高效液相色谱串联质谱法(HPLC⁃MS/MS)测定水产品中5种卡因类(cacaines)麻醉剂及其代谢物残留量的不确定度进行评定。
    方法 建立不确定度评定的数学模型,分析影响测定结果的各不确定度来源,并对各分量加以量化和合成,探讨各不确定度分量对测定结果的影响。
    结果 分析评定不确定度各分量,结果表明不确定度贡献主要来自标准曲线拟合、样品溶液制备、样品加标回收率、标准溶液配制和测量的重复性。当河虾中3⁃氨基苯甲酸乙酯甲基磺酸盐(MS⁃222)含量为8.68 μg‧kg-1时,其扩展不确定度为1.18 μg‧kg-1k=2);苯佐卡因含量为9.11 μg‧kg-1时,其扩展不确定度为1.28 μg‧kg-1k=2);4⁃氨基苯甲酸含量为91.4 μg‧kg-1时,其扩展不确定度为13.5 μg‧kg-1k=2);对乙酰氨基苯甲酸含量为91.0 μg‧kg-1时,其扩展不确定度为12.2 μg‧kg-1k=2);间氨基苯甲酸含量为95.3 μg‧kg-1时,其扩展不确定度为11.3 μg‧kg-1k=2)。
    结论 该方法适用于HPLC⁃MS/MS测定卡因类麻醉剂及其代谢残留量的不确定度分析,可为水产品中卡因类麻醉剂及其代谢测量结果的准确性提供科学可靠的依据。

     

    Abstract:
    Objective The study aimed to evaluate the measurement uncertainty in the determination of five cacaine anesthetics and their metabolites residues by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    Methods Through the establishment of mathematical model, the sources of uncertainty were analyzed, and various components were quantified and synthesized to evaluate the influence of the uncertainty components on the measurement results.
    Results The uncertainties of the experiments were mainly derived from calibration curve fitting, sample pretreatment, recovery rate, standard solution preparation and measurement repeatability. Furthermore, the expanded uncertainty related to the content in shrimp (k=2) was 1.18 μg‧kg-1 at 8.68 μg‧kg-1 for tricaine methanesulfonate (MS-222), 1.28 μg‧kg-1 at 9.11 μg‧kg-1 for benzocaine, 13.5 μg‧kg-1 at 91.4 μg‧kg-1 for 4-aminobenzoic acid, 12.2 μg‧kg-1 at 91.0 μg‧kg-1 for p-acetylamino benzoic acid, and 11.3 μg‧kg-1 at 95.3 μg‧kg-1 for 3-aminobenzoic acid, respectively.
    Conclusion This method is suitable for the uncertainty analysis of cacaine anesthetics and their metabolites determination in aquatic products by LC-MS/MS, and can provide scientific and reliable basis for the measurement accuracy.

     

/

返回文章
返回